Mariana Margarint

PROBLEMI DIFISICA

Per i giovani studenti

Manuale

www.booksprintedizioni.it

Copyright © 2014

Mariana Margarint

Grafici realizzati dall'autrice

Tutti i diritti riservati

PRESENTAZIONE

Lo scopo di questo libro è soprattutto di perfezionare la compressione della fisica per i giovani studenti.

È stato creato come supplemento ad un qualunque libro di fisica, ma espone in modo esauriente i temi fondamentale di questa disciplina.

Il libro risulta diviso in quattro capitoli, cosi denominati:

- 1. Meccanica
- 2. Calore e termodinamica
- 3. Elettricità e Magnetismo
- 4. Ottica

I problemi, ordinati per gradi di difficoltà, sono stati scelti non eliminando quelli troppo semplici. Quasi tutti i problemi sono raggiungibili ad ogni livello di studio.

Il mio desiderio è che questa raccolta diventi uno strumento utile nell'utilizzo dei concetti fisici sia per alunni che per il corpo didattico.

Autore

Costanti fisiche fondamentali

Costante	Simbolo	Valore numerico	Unità SI
Velocità della luce	C	2,99792459x10 ⁸ =3x10 ⁸	m x s ⁻¹
nel vuoto	-	,	-
Accelerazione di	G	9,8062	m x s ⁻²
gravità			
Costante di	G	6,6720x10 ⁻¹¹	Nxm ² x kg ⁻²
gravitazione univ.			
Costante universale	R	8,31441	J/mol x K.
dei gas			
Costante di	K	1,380662x10 ⁻²³	J/K
Boltzmann			
Volume molare dei	V	2,241383x10 ⁻²	m³/mol
gas			
Carica dell'elettrone	E	1,6021892x10 ⁻¹⁹	С
Massa dell'elettrone	m_{e}	9,1x10 ⁻³¹	kg
Massa del protone	m_p	1,67x10 ⁻²⁷	kg
Numero di	N_0	6,023x10 ²³	Mol ⁻¹
Avogadro		45	
Raggio	r_e	2,81x10 ⁻¹⁵	m
dell'elettrone		42	
Costante di elettrica	Σο	8,85x10 ⁻¹²	F/m
del vuoto		7	
Permeabilità	μ_0	4x3,14x10 ⁻⁷	H/m
magnetica del vuoto		7	
Costante di Rydberg	R	1,09x10 ⁷	m ⁻¹
Magnetone di Bohr	μ_{B}	9,27x10 ⁻²⁴	JT ⁻¹
Costante di Faraday	F	9,64x10 ⁴	C/mol
Equivalente	G	4,18	J/cal
meccanico del			
calore		0	2 2
Costante di	1/4π∑₀	9x10 ⁹	Nxm ² /C ²
Coulomb		10	
Raggio 1ª orbita di	r_1	0,529x10 ⁻¹⁰	m
Bohr		27	
Unità di massa	U	1,66x10 ⁻²⁷	kg
atomica		24	
Costante di Planck	H	6,626x10 ⁻³⁴	Jxs

La densità

Alluminio	2,7x10 ³ kg/m ³
Legno	(0,5-0,8)x10 ³ kg/m ³
Ferro	7,8x10 ³ kg/m ³
Oro	19,3x10 ³ kg/m ³
Rame	8,9x10 ³ kg/m ³
Piombo	11,3x10 ³ kg/m ³
Argento	10,5x10 ³ kg/m ³
Vetro	(2,5-2,7)x10 ³ kg/m ³
Acqua (4°C)	1000 kg/m ³
Petrolio	0,8x10 ³ kg/m ³
Mercurio	13,6x10 ³ kg/m ³
Benzina	0,7x10 ³ kg/m ³
Glicerina	1,26x10 ³ kg/m ³

I calori specifici

r caron specifici	
Sostanza	c (J/ kg x K)
Acqua	4,186x10 ³
Alcool etilico	2,43x10 ³
Glicerina	2,43x10 ³
Paraffina	2,89x10 ³
Aria	0,96x10 ³
Ghiaccio	2,18x10 ³
Vetro	0,84x10 ³
Ferro	0,46x10 ³
Ottone	0,38x10 ³

Alluminio	0,88x10 ³
Rame	0,38x10 ³
Mercurio	0,13x10 ³
Argento	0,21x10 ³
Zinco	0,38x10 ³
Piombo	0,13x10 ³

Equivalenti elettrochimici

<u>Equivalenti eletti oci ilinici</u>			
Elemento	Valenza	Massa atomica	K (10 ⁻⁶ kg/C)
Argento	1	107,88	1,12
Nichel	2	58,71	0,37
Oro	1 e 3	197	2,04
			0,68
Rame	1 e 2	63,54	0,66
			0,33
Zinco	2	65,38	0,34
Idrogeno	1	1,008	0,01
Ossigeno	2	16	0,08
Cloro	1	35,457	0,37
Ferro	2 e 3	56	0,29
Alluminio	3	27	0,093

Costante dielettriche

Sostanza	relativa	Assoluta(F/m)
Acqua	81	71x10 ⁻¹¹
Aria	1,0006	0,855x10 ⁻¹¹
Olio	2,2	1,9x10 ⁻¹¹

Paraffina	2,1	1,9x10 ⁻¹¹
Vetro	7	6,2x10 ⁻¹¹
Ebanite	4,3	3,8x10 ⁻¹¹

Velocità del suono

Mezzo	Velocità(m/s)
Aria (0°C)	332
Alcool	1207
Acqua	1480
Vetro	4540
Acciaio	5200

Indice di rifrazione

Mezzo	Indice
Aria	1,0003
Acqua	1,33
Vetro	1,52
Alcool	1,36
Cloruro di sodio	1,53
Diamante	2,42
Glicerina	1,47
Ghiaccio	1,31

MECCANICA

- 1. Un televisore ha lunghezza di 80 cm. Quanto sarà la lunghezza in hm, m e mm?
- 2. La distanza tra due città è di 10 km. Trovate la distanza in dam, m e cm.
- 3. Una lumaca si muove in un giardino in 10,800 secondi. Esprimete il tempo in ore e minuti.
- 4. La distanza Milano-Roma è percorsa da un treno d'alta velocità in 2 ore e 30 minuti. Calcolare il tempo in minuti e secondi.
- 5. Calcolare la distanza percorsa dalla luce in 8 ore, sapendo che la velocità della luce è di 300.000 km/s.

 $d=864x10^{7} \text{ km}$

6. La distanza tra due località è di 300 km. Un'automobile percorre questa distanza in 3 ore. Quale sarà la velocità dell'automobile?

v=100 km/h

- 7. Un ciclista si muove in un giorno con la seguente velocità: 7m/s; 0m/s; 15m/s e 20m/s. Calcolare:
 - a) La velocità media
 - b) L'errore assoluto
 - c) L'errore relativo

 $V_m = 13 \text{m/s}$ $I_a = 6.5 \text{ m/s}$ $I_r = 0.5$

- 8. In una classe, un gruppo di ragazzi misura la lunghezza del libro di matematica e trova i seguenti valori: 19 cm; 18,9 cm; 19,4 cm; 18,8 cm; 19,1 cm e 19,5 cm. Determinare:
 - a) Lunghezza media
 - b) L'errore assoluto
 - c) L'errore relativo

a) $L_m=19,1$ cm

b) L_a=0,35 cm

c) $L_r = 0.018$

9. Una piscina ha la lunghezza di 20 m e la larghezza di 6 m. Calcolare la superficie della piscina in m², dm² e cm².

 $S=120m^2$; $S=12x103dm^2$; $S=12x10^5cm^2$

10. Una scatola ha la forma di un parallelepipedo con le seguenti dimensioni: 50 cm, 30 cm e 25 cm. Determinare il volume in m³ e dm³.

V=375x10²m³ V=375x10⁵dm³

11. Calcola il volume e la massa di una sfera di ferro di raggio 25 cm e di densità 7800 kg/m³.

V=0,065m³ m=507 kg

12. Un tavolo ha la lunghezza di 1,2m e la larghezza di 50cm. Trovate il perimetro e l'area del tavolo.

p=3,4 m A=0,6 m²

- 13. La ruota di una bicicletta ha il raggio di 20cm. Determinare:
 - a) La lunghezza della ruota
 - b) L'area della circonferenza.

I=1,256m A=0,1256m²

14. La distanza tra Terra e Luna è di 384.000 km. Quanto tempo serve ad una nave spaziale per percorrere questa distanza, se la velocità è di 120 km/s?

t=3200 s=0,88 h

15. Un corridore si muove con la velocità costante di 10m/s e percorre 600 km. Quanto tempo impiega il corridore a coprire l'intero percorso?

16. Per andare a scuola a piedi, a una ragazza servono 20 minuti. Sapendo che la distanza tra casa e scuola è di 500 m, determinare la velocità della ragazza.

V=0,41 m/s

17. Un ciclista si muove alla velocità di 40 km/h in 3 ore e 45 minuti. Calcolare la distanza percorsa.

d=150 km

18. Un'automobile si muove per 20 minuti alla velocità costante di 60 km/h. Che distanza percorre l'automobile?

d=20 km

19. Un aereo percorre la distanza tra Bergamo e Bucarest in 2 ore e 30 minuti. Sapendo che la velocità dell'aereo è V= 900 km/h, determinare la distanza tra le due città.

d=2250 km

20. La distanza tra due città è di 3600 km. Un aereo percorre questa distanza alla velocità di 800 km/h. Trovate il tempo necessario per arrivare alla destinazione.

t=4,5h

21. Un corpo si muove rettilineo uniforme e percorre in 40 secondi la distanza di 2000m. Calcolare la distanza percorsa in 120 secondi.

d₁=6 km

- 22. Uno studente, per andare all'università, percorre la distanza di 5 km con velocità diversa. Con la macchina percorre 4,5 m in 10 minuti, poi, dato che la benzina finisce, deve coprire il resto del percorso a piedi e arriva in 15 minuti. Determinare:
 - a) La velocità media
 - b) Media della velocità

 $V_m = 3,33 \text{ m/s}$ $V_M = 4,025 \text{ m/s}$

23. La distanza tra due località A e B è di 60 km. Due ciclisti partono a distanza di 5 minuti l'uno dall'altro, il primo viaggia alla velocità di 20 km/h. Sapendo che i due arrivano nello stesso istante, trovate la velocità del secondo ciclista.

 $V_2=5,4$ m/s.

- 24. Un pullman che trasporta persone in vacanza deve percorrere la distanza di 3.000 km; i ¾ della strada con la velocità di 110 km/h e il resto della strada, per colpa dei lavori, con la velocità di 30 km/h. Calcolare:
 - a) Velocità media sull'intero percorso
 - b) Il tempo necessario

Vm=0,022 km/h t= 45,45 h

- 25. Un corpo si muove rettilineo uniforme dopo la seguente equazione: s= 2,5 + 5t (m).
 - a) Determina e rappresenta in una tabella per t=1, 2, 3, 4, 5, secondi della distanza e del tempo
 - b) Rappresenta graficamente il moto
 - c) Calcola le velocità per t=3 secondi e t=5 secondi

 $V_1=5,83$ m/s $V_2=5,5$ m/s

26. Un corpo si muove rettilineo uniforme dopo la legge s=10+30 t (m). Rappresenta graficamente la distanza-tempo per i primi 4 secondi, poi calcola la media della velocità per 4 secondi.

 $V_{m} = 35,2 \text{m/s}$

27. Un'automobile percorre 400 km in 6 ore in 2 tratti: nel primo tratto va alla velocità di 80 km/h e nel secondo tratto va alla velocità di 60 km/h. Trovate le distanze percorse con queste velocità.

s1=160 km s2= 240 km

- 28. Due motociclisti partono contemporaneamente da due città distanti 300 km. Il primo va alla velocità di 20 km/h e il secondo va alla velocità di 30 km/h. Trovate:
 - a) Dopo quante ore si incontrano
 - b) Quante sono le distanze percorse nel momento in cui si incontrano.

t= 6 h $s_1=120 km$ $s_2=180 km$